Special Features

Read the latest Special Features from Functional Ecology:

 Special Feature: Special Feature: Plant Pollinator Interactions from Flower to Landscape
Guest edited by Susan W. Nicolson and Geraldine A. Wright Volume 31, Issue 01

Animal pollinators have driven the diversification of plants on the earth for the past 120 million years. The mutualism between plants and their pollinators rests on an exchange: food for pollinators and efficient vectoring of sexual reproduction for plants. This relationship has been shaped by many factors during the course of its evolution-- competition between pollinators for affects the shape, colour, and scent of flowers, while competition among flowering plants has influences the extent to which plants invest in the production of pollen and nectar. While many pollinators are ‘generalists’ and visit a variety of flowering plants to obtain food, throughout the course of evolutionary history, close relationships between specific pollinators and plant species have developed. An important issue today, given the widespread concern about pollinator declines, is determining the impact of human land use on the relationships between plants and their pollinators.

This special feature examines the mechanisms of specialization and the factors that govern the evolution of plant pollinator relationships. The papers cover the characteristics of floral traits shaped by specialization in plant-pollinator relationships; the nature of the food offered to pollinators; and characteristics of populations of pollinators and plants that make them resilient to anthropogenic change.

Read all the papers free online. You can read all the lay summaries here or look at the accompanying Virtual Issue: Plant-Pollinator Interactions.

 Special Feature: Special Feature: Advances and challenges in the study of ecological networks
Guest edited by Timothée Poisot, Daniel B. Stouffer and Sonia Kéfi Volume 30, Issue 12

Ecological networks have attracted attention both by providing tools to visualize and describe ecological systems and by contributing more fundamentally to the understanding of some of the longest standing and core questions in ecology-- such as why and how do so many species coexist?. This Special Feature presents research at the frontier of what networks can do for ecologists, and outlines an ambitious research agenda to integrate network approaches into the standard ecological toolkit. As networks are becoming more popular generally, tools developed in network science keep increasing. At the same time, new types of ecological data are emerging, placing us at an opportune crossroad to reflect on when and how looking at ecological communities as networks leads to new and useful insights.

Read all the papers free online. You also read all the lay summaries here.

 Special Feature: Special Feature: The Functional Role of Silicon in Plant Biology

Guest edited by Julia Cooke, Jane L. DeGabriel and Susan E. Hartley Volume 30, Issue 8

Silicon is an important element in plant biology, with complex roles in plant strategies and in mediating interactions with their environment and other organisms, and leap into new territory from here. There has been a long history of plant Si research, but the field has especially taken off, particularly in terms of ecological functions for Si, within the last two decades. Exploitation of plant Si use for agricultural gain and palaeontological research has also provided valuable contributions to plant Si knowledge. It is now timely to take stock and draw together the latest research on plant Si and take advantage of emerging synergies between seemingly disparate fields, ranging from the molecular to the geological, to shape clear directions for future studies.

This special feature of Functional Ecology consolidates our current understanding of plant silicon from a plant functional perspective, encompassing all scales, from geosciences to genes, tracing Si in both soils and plants and fusing knowledge from individual studies into powerful generalized statements. It shows the scale on which plants impact the global Si cycle and our role in cycle modifications.

Read all the papers free online. You also read all the lay summaries here.

 Special Feature: Special Feature: Ecosystems, Evolution and Plant–Soil Feedbacks
Guest edited by Joe Bailey and Jen Schweizer Volume 30, Issue 7

Ecological feedbacks occur when interactions at one time determine (either positively or negatively) the performance or interactions of organisms at another time. Because populations are individuals that vary genetically, and because individuals respond differently to the environmental conditions created by feedbacks, evolution is inevitable.

Very little work to date has focused on the evolutionary mechanisms and consequences of plant soil feedback. This Special Feature focuses on this topic and highlights important new directions in plant-soil feedback that are just beginning to be examined. These advances in plant-soil feedback research, along with ongoing mathematical/theoretical advances, further demonstrate how important plant-soil feedback research is for understanding not only the ecology, but also the evolution of complex interactions - as well as showing us how much we still have to learn.

Read all the papers free online. You also read all the lay summaries here.

Cross-journal Special Feature: Demography Beyond the Population
Guest Editors: Rob Salguero-Gómez, Alden Griffith, Jessica Metcalf, Cory Merow, Sean McMahon and Dylan Childs
Special Feature in Volume 30, Issue 2
This exciting collaborative and interdisciplinary Special Feature integrates novel lines of research in the vast field of demography that directly interact with other ecological and evolutionary disciplines.The goal of the Special Feature - to highlight the interdisciplinary potential of demography - is further emphasised by the fact that its articles are spread among all six journals of the British Ecological Society. The Special Feature is based on a British Ecological Society symposium that was held in March 2015 and is the first time all six BES journals have collaborated to produce a joint special feature.

 Special Feature: Mechanisms and Consequences of Facilitation in Plant Communities
Guest edited by Richard Michalet and Francisco Pugnaire Volume 30, Issue 1

Twenty years after the emergence of facilitation as an important modern research area, this Issue shows its high vitality and potential. Although facilitation (positive interaction among organisms) is a pioneer core concept in community theory, it was neglected by most community ecologists for decades due to the overwhelming popularity at that time of the individualistic and competition theories. Until the mid-nineties, competition was by far the most studied biotic interaction, in particular by plant community ecologists. Then in 1994, due to the increasing evidence of facilitation in experiments conducted in severe conditions from marine intertidal and terrestrial environments, Bertness & Callaway proposed a conceptual model where competition switches to facilitation with increasing environmental severity. Since then, and during the following two decades, interest in facilitation has never ceased to increase.

This Special Feature goes back to the basics of facilitation, reviewing our knowledge on the main functional mechanisms of facilitation, their implications for community structure and ecosystem functions and services. Although far from being a fully comprehensive overview of the numerous underlying mechanisms and community and ecosystem implications of facilitation, this Special Feature provides evidence that focusing on underlying mechanisms and implications of facilitation certainly improved our knowledge on the importance of this fundamental process in ecological science.

This Special Feature also complements the Special Feature: Mechanisms of Competition, published in the journal in 2013 (Robinson, Trinder & Brooker 2013).

Read all the papers free to download from volume 30 issue 1. You also read all the lay summaries here.

Special Feature: Ecology of Organisms in Urban Environments
Guest edited by Amy Hahs and Karl Evans Volume 29, Issue 7

Urban environments present a unique opportunity to expand our fundamental knowledge related to ecology and evolution due to the presence of intense and often novel selection pressures. Despite this, the potential of combining functional ecological research with urban ecology is a long way from being fully realized as the focus of much urban research to date has involved describing patterns along environmental gradients rather than investigating the mechanistic processes that lie at the heart of functional ecology. The purpose of this special feature is to draw attention to the plethora of opportunities that await researchers investigating the ecology and evolution of organisms in urban environments. The combination of environmental stressors and conditions within urban areas provides a novel opportunity to test and expand our theories related to ecology and evolution of organisms, and some intriguing insights are already beginning to emerge. Thus, urban ecology has the potential to extend our understanding of extremely well-studied ecological and evolutionary problems.

Faced with the global environmental challenges that now confront us, it is imperative that we develop a strong ecological evidence base that can be drawn upon to inform important decisions related to future courses of action. Urban ecosystems offer a valuable microcosm in which we can test our existing ecological knowledge and address some of the key knowledge gaps that will be required for humanity to successfully navigate through the Anthropocene. The research topics presented in this special feature are firmly grounded in existing ecological frameworks. The main knowledge gap lies in understanding how these systems perform under the novel stressors that are present in urban environments. By undertaking basic research on the ecology of organisms in urban landscapes, we will not only enhance our scientific understanding, but we also enlarge our opportunities to use this knowledge to inform decisions that will impact on the ability of organisms to persist and adapt to cities in the future.

Read all the papers free to download from volume 29, issue 7. You also read all the lay summaries here.

Extended Spotlight: Community Phylogenetics and Ecosystem Functioning
Guest edited by Anita Narwani, Patrick Venail, Blake Matthews and Jeremy Fox Volume 29, Issue 5

There is a long tradition in ecology of trying to understand community assembly processes by making inferences from patterns of community structure. However, multiple processes can often generate the same pattern—an important reminder that understanding community assembly requires careful understanding of how pattern and process are linked. Community phylogenetics now aims to use patterns of phylogenetic distance or dispersion among members in a community to infer the nature and strength of the ecological processes that drive the structure of communities. With the increasing availability of genetic sequence data and phylogenetic tools, the number of studies using phylogenetic information to infer processes of community assembly has increased rapidly. In the light of this growing interest in using phylogenetics in understanding community assembly and ecosystem functioning, the goals of this extended spotlight are to (i) critically re-examine the assumptions underpinning phylogenetic approaches to community ecology, (ii) chart a route forward for how to overcome the limitations of current approaches and (iii) more explicitly and mechanistically connect the dots between the processes of trait evolution, community assembly and ecosystem functioning.

Read all the papers free to download from volume 29, issue 5. You also read all the lay summaries here.

Special feature: Defensive Symbiosis
Guest edited by Keith Clay Volume 28, Issue 2

Defensive symbioses are indirect interactions that involve at least three species (host, symbiont and enemy) where the net benefits of symbiosis are contingent on the presence of enemies. Protective or defensive mutualisms have long been recognized, and while a few systems have been well studied, our knowledge of the diversity, distribution, mechanisms and ecological consequences of defensive symbioses is limited. This is despite increasing scientific interest and technological innovations enabling rapid discovery and novel research directions in symbiotic systems. Most macro-organisms support diverse microbial communities, but we have limited understanding of how microbes interact with each other within hosts and with enemies of the host. The results of research on defensive symbiosis have many implications for ecological communities and ecosystems, agriculture and human health.

The goal of this Special Feature is to explore the diversity, mechanisms and consequences of defensive symbiosis mediated by micro-organisms to help organize and interpret the growing body of work and place it within a broader ecological and evolutionary context of mutualism and symbiosis. In the accompanying papers, leading researchers in the field synthesize their own and related research on defensive symbiosis and provide independent perspectives on the current state of the field and future directions – including identifying defensive symbiosis, especially difficult in complex communities of macro- and micro-organisms where it is non-trivial challenge to obtain direct evidence of defensive symbiosis, but also looking at mechanisms of defence, costs and benefits of microbial symbiosis vs. innate defensive mechanisms, dynamics of defensive symbiosis, mechanisms of symbiont transmission and community and ecosystem consequences of defensive symbiosis.

Read all the papers free to download from volume 28, issue 2. You also read all the lay summaries here.

Special feature: Climate Change and Species Range Shifts
Guest edited by Joseph K. Bailey Volume 28, Issue 1

Research indicates that the global climate is rapidly changing, effecting patterns of temperature and precipitation at many geographical scales and that these changes are being caused by human activity. Since future rates of climate change may be greater than those that occurred over the evolutionary history of many terrestrial species, there is an increased need for studies on the evolutionary potential of species to adapt to new environments and an understanding of the traits that are likely to respond. Research questions that arise from this are challenging to answer due to the diversity of disciplines that inform them, including quantitative and molecular genetics, eco-physiology, mathematical modelling, climate science, biogeography as well as community and ecosystem ecology. In climate change research, it is important as well to incorporate an evolutionary perspective and acknowledge that traits are likely to vary throughout a species range and move beyond climate and climate alone as the primary driver of species range shifts. For most species the potential for adaptive evolution in functional traits has been largely overlooked by models that focus instead on niche conservatism and bioclimate envelopes to predict future species ranges.

The implications are that future climate changes have the potential to greatly modify species ranges and/or alter the ability of plants to adapt to future changes .The study of genetic divergence along ecological gradients is fundamental to understanding adaptive evolution and diversification. While much research has focused on the evolutionary diversification of species, there is little understanding of how evolutionary dynamics may impact contemporary ecological interactions or ecosystem processes. Evolution has generally been taught and thought of as a slow process resulting from the accumulation of small genetic changes that may ultimately lead to genetic divergence and speciation. In fact, contemporary rapid evolution has resulted in changes to life-history traits, physiological traits, morphological traits, behavioural traits and even species interactions across many different species. This change in perspective is largely due to three points that are also fundamental to the argument for incorporating an evolutionary perspective into climate change research: rapid evolution is common, genetic divergence occurs along a variety of gradients, including those affected by global change, and genetic divergence in a variety of species can impact ongoing species interactions, community structure, biodiversity and ecosystem function.

Species provide ecosystem services that support the foundation of life on this planet and many of the raw materials that drive global economies. Genetic variation within a species, as well as species' interactions with other species, can impact the ecosystem services that species provide, so it is important to understand the effects of a variable climate on the geographical boundaries and trait variation of populations. We must develop a deeper perspective on how a rapidly changing environment may affect genetic variation, functional traits, species interactions and ultimately, the genetically based services those ecosystems provide. This Special Feature heralds a new direction in climate change research and broadens our perspectives on the consequences of gradients to eco-evolutionary dynamics in a changing world.

Read all the papers free to download from volume 28, issue 1. You also read all the lay summaries here.

Special feature: Mechanisms of Plant Competition
Guest edited by David Robinson, Clare J. Trinder and Rob W. Brooker Volume 27, Issue 4

It is sometimes argued that competition is now such a familiar aspect of ecology that we can learn little more about it that is truly valuable or surprising. But if that were true, why do ecologists still spend so much time arguing about it? Ecology has barely begun to understand competition, either in terms of how it happens between particular individuals in specific locations or, most certainly, in terms of its long-term, large-scale significance. The basic processes of plant competition have been known for a long time, at least at a conceptual, macroscopic level, but characterizing the precise cause-and-effect relationships that allow those and associated processes to occur, quantifying their interactions with others and, crucially, revealing their impacts (if any) on population dynamics or community structure have proven to be fraught with practical difficulties.

The current position is one in which ‘competition’ is as much a part of the plant ecology furniture as it is of ecology generally, not because it is fully understood, but because it is a theoretically useful concept. New evidence and insights now being obtained about the mechanisms by which plants compete will move us closer to achieving the big breakthrough on competition ecology is still waiting for. This Special Feature brings together some of the latest ideas and evidence about how plants compete with one another and points to better ways of addressing the many still-unanswered questions on plant competition.

Read all the papers free to download from volume 27, issue 4. You also read all the lay summaries here.

Extended Spotlight Responses to global climate change: insights from organismal physiology
Guest edited by Steven L. Chown and Ary A. Hoffmann Volume 27, Issue 4
The successful management of biodiversity for conservation, agriculture, or human health-related purposes will depend on improvements to both the accuracy and precision of local-scale ecological forecasting. In this Extended Spotlight, four papers present recent developments in this area, illustrating the importance of what can be termed an ecophysiological forecasting approach. The collection of papers presented here highlights ecophysiological forecasting as a means to improve substantially our current ability to make taxon and area-specific forecasts, especially given brisk developments in understanding of the ways in which ecological interactions can be incorporated into similar approaches. These papers also emphasize the rapidly growing importance of being able to integrate large environmental, trait-based and genomic datasets

Read all the papers free to download from volume 27, issue 4. You also read all the lay summaries here and an accompanying Virtual Issue on Ecophysiological forecasting: predicting adaptation and limits to adaptation.

Special feature: Plant-Microbe-Insect Interactions
Guest edited by Arjen Biere and Alison Bennett Volume 27, Issue 3

The study of “Plant-Microbe-Insect” (PMI) interactions is a relatively young field, but one which has seen huge growth in the past twenty years. Research on PMI interactions has gradually bridged the traditionally separated sub-disciplines of plant pathology, insect pathology, and entomology, and as such represents a broad research field, both in terms of the disciplines involved (from molecular biology to community ecology) and in terms of the diversity of types of interactions that it embodies. Besides their ecological and evolutionary implications, PMI interactions also have implications for fields of economic importance such as agriculture, biological invasions, and conservation.

In this special feature, Arjen Biere and Alison Bennett bring together eight papers reviewing different aspects of these recent advances in the field of Plant-Microbe-Insect interactions, with papers highlighting the ecological and evolutionary importance of three-way interactions between plants, microbes and insects as well as some of the vast progress in unravelling the molecular mechanisms underlying plant responses to beneficial and pathogenic microbes and insects, and their modulation by the abiotic environment. Such insight is important for understanding how plants prioritize their defence responses and cope with multiple stress, but also for understanding patterns of cross-induced resistance and susceptibility between microbes and insects, and for predicting how PMI interactions will respond to environmental change.

The contributions in this issue give a detailed insight in the mechanisms and ecological and evolutionary roles of PMI interactions, that will hopefully inspire the readers to join this young, developing interdisciplinary field.

Read all the papers free to download from volume 27, issue 3. You can also read all the lay summaries for the issue here.

Special feature: The Ecology of Stress
Guest edited by Rudy Boonstra Volume 27, Issue 1

In vertebrates, a key response to life's difficulties is the activation of the stress axis. The study of this axis is one of the best windows we have to see under the surface of the animal into the functional mechanisms it uses to cope. The major reason for this is that glucocorticoids, the key circulating steroid hormones of the stress axis, influence the expression of about 10% of the genome, including genes controlling metabolism, growth, repair, reproduction and the management of resource allocation. At the individual level, the stress axis plays a key role in allowing animals to respond to change and challenge in the face of both environmental certainty and uncertainty. At the species level, the stress axis plays a central role in evolutionary adaptations to particular ecological pressures, such that an understanding of the differences among species is essential to understanding life-history adaptation. This axis plays a role, not just during life's difficulties, but all the time, mediating the relationship of the organism to its environment.

The broad sweep of papers included in this special feature summarizes the breadth and depth of research on the ecology of stress in wild vertebrates. It is an extremely vigorous area of research, where we have made significant headway, but these reviews have also identified controversies of methods and interpretation that future work will have to resolve. They identify the key gaps in our knowledge that link the impact of stress on individuals to population and community processes. They also highlight the complexity of the stress response and the species-specific solutions to the problem of existence. To understand how vertebrates interact with their environment, we must understand how the stress axis functions and its integrative role in adaptation. These papers provide a solid foundation for this understanding.

Read all the papers free to download from volume 27, issue 1. You can also read all the lay summaries for the issue here.

Special feature: Invasions and Infections
Guest edited by Alison M. Dunn and Sarah E. Perkins
Volume 26, Issue 6
Invasive species disrupt native communities worldwide, affecting biodiversity, community structure and processes across a range of ecosystems. Invasions can have devastating impacts on natural communities, on agriculture and on human health. Understanding, predicting and managing biological invasions represents a global challenge.
From individuals to ecosystems, parasites are pervasive. Parasites, by definition, cause harm to their hosts. There is growing evidence that parasites and pathogens can affect the success of an invasion, both though loss of the parasitic biome and also by spill-over effects on the native community.
Here we investigate, across scales, the role of parasites and pathogens and the infections they cause in invasion ecology. The need to synthesise, and to predict and understand ‘Invasions and Infections’, brought leading ecologists together at the British Ecological Society Annual Meeting (UK 2011). In this special issue of Functional Ecology, we bring together a series of seven papers, stimulated by this meeting, that consider the wide ranging effects of parasites in biological invasions.
Read all the papers free to download from volume 26, issue 6. You can also read the lay summaries for this special feature here.

Special feature: Evolutionary Ecology of Plant Defences against Herbivores
Guest edited by Marc T J Johnson
Volume 25, Issue 2
Plants and herbivores represent two of the most diverse groups of organisms on earth and their interactions are fundamental to both basic and applied problems in biology. The articles in this special feature review the recent theoretical, experimental and methodological progress that has been made on the evolutionary ecology of plant defences against herbivores. In some cases, these reviews support long-standing theories with new analyses, whereas in other instances conventional wisdom is called into question and popular hypotheses are rejected.
Overall, this special feature provides a state-of-the-art look at the recent advances and a roadmap for future research on the ecology and evolution of plant-herbivore interactions.  Read all the papers in volume 25, issue 2.

Special feature: Ecological Immunology
Guest edited by Lynn B Martin, Dana Hawley and Daniel Ardia
Volume 25, Issue 1
The immune systems of all organisms vary dynamically with ecological factors and constraints. This special issue on Ecological Immunology aims to unite concepts in this growing field (including tolerance, the role of epistatic and epigenetic constraints, and patterns of disease susceptibility for humans and wildlife) that have the potential to cross taxonomic boundaries and thereby provide a stronger conceptual framework for the study of immune variation over space and time. Read all the papers from this special feature in volume 25, issue 1.

Special feature: The Ecology of Antioxidants & Oxidative Stress in Animals
Guest edited by Kevin McGraw, Peeter Hõrak, David Costantini and Alan Cohen
Volume 24, Issue 5
Studies of antioxidants and oxidative stress were traditionally relegated to biochemical and medical disciplines. However, in the past two decades, these two research areas have been embraced by ecologists and exploded into the new fields of antioxidant ecology and oxidative-stress. This special feature aims to capture the spirit of these emerging fields and dedicated efforts to marry mechanistic and functional perspectives to a fundamental challenge for life on Earth - an oxygen-rich environment.
We highly recommend reading the virtual issue Anitoxidants & Oxidative Stress in Animals in conjunction with this special feature. 

Special feature: Adaptive foragers and community ecology
Guest edited by Andrew Beckerman, Owen Petchey and Peter Morin.
Volume 24, Issue 1
This Special Feature contains five papers that together support a vision for the future of food-web research centred on adaptive behaviour. They are authored by people who might be considered grand masters of the field as well as people just entering academia. Importantly, they provide perspective and insight while stimulating thought about the use and importance of traits across various scales.
Further papers published by Functional Ecology in the field of Food Webs can be read in Andrew & Owen's virtual issue which accompanied this special feature.

Special feature: Floral scent in a whole plant context

Guest edited by Robert Raguso from Cornell University.  
Volume 23, Issue 5
This special feature from Functional Ecology addressed the need to explore the full range of fitness consequences of floral VOC variation, and the need to understand how plants use floral VOCs to consolidate their reproductive and defensive imperatives. To read the full introduction and all the papers on Wiley Online Library published in the October 2009 issue of Functional Ecology.

Special feature: Nutritional Ecology
Guest edited by David Raubenheimer and Carol Boggs
Volume 23, Issue 1
Our first issue of 2009 saw the publication of a new special feature  comprising eight invited peer-reviewed articles presenting the most up-to-date research in Nutritional Ecology. This special feature was accompanied by a virtual issue of papers from the same theme. Click here to read the virtual issue introduction and selected nutritional ecology papers. 

Special feature: Towards a Predictive Understanding of Belowground Process Responses to Climate Change
Guest edited by Elise Pendall, Lindsay Rustad and Josh Schimel
Volume 22, Issue 6
The December 2008 issue of Functional Ecology included a guest editorial and 7 papers on belowground process responses to climate change.   The guest editors highlighted some of the advances being made and provided directions for future research.  

Special feature:  The Evolutionary Ecology of Senescence
Guest edited by Pat Monaghan, Anne Charmantier, Dan Nussey and Rob Ricklefs
Volume 22, Issue 3
The June 2008 issue included seven influential review articles on the evolutionary ecology of senescence.  Monaghan et al selected papers which considered the underlying causes of senescence looking at the evolutionary ecology of the ageing process summarising the principal mechanisms thought to be involved. 

Special feature: Sexual Selection, Physiology and Performance
Guest edited by Duncan Irschick, Raoul van Damme and Anthony Herrel
Volume 21, Issue 4
This was the second of Functional Ecology's 2007 special features. Papers in this feature focused on a functional approach to sexual selection.  The issue includes 6 papers and a introduction by Irschick et al.

Special feature: Evolution on Ecological Time-scales
Guest edited by Andrew Hendry, Scott Carroll and David Reznick
Volume 21, Issue 3
Hendry et al brought together 7 papers for this special feature looking at factors that influence evolution on ecological time-scales and to assess the consequences of such evolution.  

Search the Site


Site Adverts

Special Feature:Plant-Pollinator Interactions
Plant-Pollinator Interactions
Ecology of Exercise
Advances and Challenges in the Study of Ecological Networks
Virtual Issue: Towards a mechanistic understanding of global change ecology
30 years of Functional Ecology
Join today for a year's free membership